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Abstract: Learning via trial-and-error, reinforcement learning (RL) can enable
robotic agents to learn robust policies. However, practical realizations of RL al-
gorithms require extensive human supervision: primarily for engineering reward
functions and repeated resetting of the environment between episodes of interac-
tions. In this work, we propose a general pipeline requiring minimal human super-
vision throughout training: starting with a small set of expert demonstrations, the
agent autonomously practices the task by learning to both do and undo the task,
simultaneously inferring the reward function from the provided demonstrations as
well. We validate our proposed pipeline on EARL, a non-episodic RL benchmark
from visual inputs with minimal environment resets. We demonstrate our pipeline
on a real-world Franka Panda robot arm, where we find that autonomous training
improves the robustness of a policy by 50% compared to behavior cloning on a
grasping task.
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1 Introduction

Being robustly performant in situations that a robot may practically encounter is a prerequisite for
robotics to become useful in the real world. Imitation learning methods such as behavior cloning
(BC), though competent, do not generalize well when the agent goes outside its training distribution
[1]. More general robots encounter broader set of states, anticipating and providing expert demon-
strations becomes increasingly expensive and untenable. On the other hand, reinforcement learning
can iteratively learn by trial-and-error, leading to more widely robust policies. However, practical
instantiations of RL on robotic setups require extensive supervision for engineering task-specific
reward functions and repeatedly resetting the environments between episodes. Enabling robots to
train autonomously would allow robots to train and improve longer leading to more robust policies,
and make RL algorithms more broadly applicable.

Autonomous operation (i.e. minimal human supervision for resetting environments) is an under-
stated requirement for successful applications of RL to robot learning [2, 3, 4, 5, 6, 7]. Unfor-
tunately, these prior works design environments and/or reset mechanisms to enable autonomous
operation that is time-intensive, task-specific and often brittle. Zhu et al. [8] outline a set of condi-
tions for a general autonomous robotic system: no state estimation, minimal/no reward engineering
and no repeated interventions for resetting environments. They introduce a perturbation controller
to randomly explore the environment and continue improving the policy autonomously. However,
the random nature of the perturbation controller does not scale well as the size of state-action in-
creases. Gupta et al. [9] demonstrate an autonomous system to learn a high-dimensional dexterous
manipulation task by leveraging multi-task RL. However, the setup require state-estimation, reward
engineering and a manually designed task-graph.
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In addition to the requirements laid down in Zhu et al. [8], we require that human supervision for an
autonomous robotic system to be front-loaded, i.e., before the robot begins training. This enables
the robot to train and improve without requiring further supervision. In view of these requirements,
we propose the following general pipeline: a human collects a small set of demonstrations prior
to training, which is used for both task-specification and autonomous policy learning directly from
high-dimensional visual observations. Why demonstrations? Demonstrations can allow robotic
systems to scale to larger state-action spaces, alleviating exploration challenges [10] while allowing
task-specification via inverse RL [11, 12, 13, 14]. Additionally, demonstrations can also accelerate
autonomous policy learning via MEDAL [15, 16], where a backward policy learns to match the
distribution of states visited by an expert, such that the forward policy can learn to solve the task
from a wide set of states. The complete pipeline and how it works from visual inputs is detailed in
Section 3. We evaluate our experiments on EARL [17], a simulated non-episodic RL benchmark,
where we validate the performance of our proposed pipeline. In the real world, we evaluate our
proposed pipeline on the task of grasping a cube using Franka Panda robot arm, directly from visual
inputs. We observe that our pipeline learns a policy that improves the grasping robustness by over
50% compared to behavior cloning.

2 Preliminaries

The formal problem setup for autonomous RL can be found in Sharma et al. [17]. Briefly, the agent
operates in Markov Decision Process M ≡ (S,A, T , r, ρ0), where S denotes the state space, A
denotes the action space, T : S×A×S → R≥0 denotes the transition dynamics of the environment,
r : S × A → R as the reward function, and ρ0 denotes the initial state distribution. The challenge
is to learn a competent and robust policy in a non-episodic environment, i.e., the environment does
NOT reset to a state s0 ∼ ρ0 repeatedly after a fixed number of steps, as is the case in episodic RL.

Our proposed pipeline extensively uses implicit distribution matching via adversarial learn-
ing, as popularized by generative adversarial networks [18]. Adversarial learning enables us
to match pθ(·) to a target distribution p∗(·) that can only be sampled to generate a dataset
{xi ∈ X}Ni=0. The problem of minimizing the Jensen-Shannon divergence JS(pθ || p∗) can
be written as a minimax optimization: minpθ

maxD Ex∼pθ
[log(1−D(x))] + Ex∼p∗ [logD(x)],

where D : X 7→ (0, 1) is a discriminator trying to classify real samples from p∗ from
fake ones generated by pθ, whereas pθ is trying to fool the discriminator into predicting the
samples are from p∗. The idea has been extensively used in reinforcement learning: ad-
versarial imitation learning [11, 19], reward inference from goals [12, 13] and autonomous
learning [16]. In context of RL, p∗ is the target distribution of states ⊂ S and pθ is the
stationary distribution induced by a policy πθ. Noting that minpθ

Es∼pθ
[log(1−D(s))] =

maxπθ
−Es0∼ρ0,at∼πθ(·|st),st+1∼p(·|st,at) [

∑∞
t=0 γ

t log(1−D(st+1))], the optimization with re-
spect to the generator can be re-written as a RL problem with− log(1−D(·)) as the reward function.
The classification for D is to discriminate between the states sampled from the target distribution
p∗ from the states visited by the policy πθ. In this work, we will be building on VICE [13, 20] and
MEDAL [16], where VICE uses a set of goal images as the target distribution and MEDAL uses the
set of the states visited by an expert policy π∗ as the target distribution.

3 Pipeline for Autonomous RL

We have the following desiderata for an autonomous learning robotic system [8]: No state estima-
tion, i.e., the system should be able to learn from high-dimensional visual inputs, minimal/no reward
engineering and minimal human supervision for resetting environments between trials. Additionally,
our system will assume access to a small set of expert demonstrations, collected prior to training. In
view of these considerations, we propose the following pipeline:

High-dimensional visual observations. We use convolutional neural networks for encoding the
observations, borrowing the architecture from DrQ-v2 [21]. We follow the prescribed data augmen-
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Figure 1: Overview of the architecture used by the agents.
Image observations are embed by a CNN into a low-dim
space and passed to the policy, critic and discriminator af-
ter concatenating with proprioception. Discriminator outputs
the reward for the agent, while being trained to distinguish
between states visited by the agent and target states. The for-
ward and backward agents differ only in the choice of target
distributions.

Algorithm 1: Training Loop Overview
initialize F,B; // forward, backward

agents
s ∼ ρ0; A← F; // initialize env + agent
while not done do

a ∼ A.act(s); s′ ∼ T (· | s, a);
A.update buffer({s, a, s′});
A.update discriminator();
A.update agent();
// switch agents after a fixed interval
if switch then

A← switch(A, (F,B))
s← s′;

tations of random cropping and shifts when embedding visual observations. The embeddings are
fused with proprioceptive information from the robot before being passed to the agent.

Minimal reward engineering. We learn the reward function in line with the minimax optimization
in Section 2. We learn a discriminator, with a convolutional backbone (including data augmenta-
tions) and late fusion embeddings similar to the one described earlier. The positive observations
come from the target distribution and the negative observations are collected by the policy while
interacting with the environment. The discriminator is trained with a binary cross-entropy loss to
solve this classification problem. To regularize the discriminator, we use mixup [22] on embeddings
generated after fusion with proprioception, and spectral norm [23]. Overall, only a small set of
samples from the target distribution is required to learn the reward function.

Minimal human supervision for resets. To reduce the requirement of resetting environments, we
build on MEDAL [16]. MEDAL instantiates a forward agent πf that learns how to solve the task and
a backward agent πb that learns how to undo the task. Both the agents solve the minimax optimiza-
tion described in Section 2, with the only difference being the target distribution. Specifically, the
forward agent optimizes the VICE reward, where the target distribution is created by choosing the
last Hgoal steps of the every expert demonstration (interpreted as the goal distribution of the task).
The backward agent optimizes the MEDAL reward, where the objective for the policy is to match
the state-distribution of the expert agent. This enables the agent to re-try the task from a wide variety
of relevant states. Therefore, the target distribution are all the states in expert demonstrations. Both
the forward and backward agent are trained using REDQ [24]. Given the access to demonstrations,
we leverage techniques from Nair et al. [10], specifically oversampling transitions from expert data
and regularizing policy using the behavior cloning loss.

An overview of our proposed learning pipeline and a high-level pseudocode can be found in Figure 1.
The exact hyperparameters can be found in Appendix A.

4 Experiments
In this section, we empirically analyze our proposal: (a) we evaluate the our proposed modifications
to MEDAL on the EARL benchmark [17] and (b) we validate our proposed pipeline in the real-world
on a Franka Panda robot on a cube grasping task.

Simulated experiments. For our simulated environments, we evaluate MEDAL on three tasks from
the EARL benchmark: Tabletop Organization is a manipulation task where a simplified gripper
has to relocate the mug to one of four goal locations, Door Closing tasks a sawyer robot with
closing the door and Peg Insertion requires the sawyer robot to pick up the peg from different
positions and insert it into the hole. All the environments are sparse reward environments that come
with 10 forward demonstrations and 10 backward demonstrations. EARL environments are non-
episodic in nature, i.e the environment is reset infrequently (every 10K steps instead of every 100
steps), and the policy is evaluated by averaging the return over 10 trials starting from the initial state
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Figure 2: Deployed policy evaluation on the EARL benchmark. We evaluate our proposed modifications to
MEDAL, including working from visual observations, oversampling transitions from expert demonstrations
and BC regularization for the policy loss. Our proposed pipeline and modifications (labeled vision (+mods), in
green) result in substantial improvements to sample-efficiency of MEDAL (labeled state, in black).

distribution, every 5K training steps (Deployed Policy Evaluation). We modify the environments
to return visual observations instead of state information to test our pipeline. The non-episodic
nature of the environment requires the agent to reset the environment itself to enable autonomous
practicing.

We evaluate the following changes to MEDAL: switching from SAC to REDQ [24] as the base algo-
rithm, learning from images instead of state, reward learned by VICE, using BC regularization on the
policy loss and oversampling transitions from demonstrations when training the agents [10]. We ob-
serve in Figure 2 that our proposed pipeline substantially improves the performance over MEDAL,
getting to 80% success rate in 600K steps on Tabletop Organization and Door Closing, and
70% on Peg Insertion where MEDAL has a performance of 0%.

Figure 3: (top) An overview of the robot
learning setup. (bottom) Samples showing
test states in-and-outside demo distribution

Franka Panda cube grasping. In a real world exper-
iment, we task the Franka robot arm with grasping a
red cube. The setup includes a wrist camera [25] and
fixed third person camera for image observations, and
the end-effector position and gripper width as propriocep-
tive information (Figure 3). We collect 50 expert demon-
strations, with randomized orientations, with some noise
around the center of the arena. We run the setup au-
tonomously for 300K samples, amounting to a wall-clock
time of approximately 1 day. Such a large data collection
is only because the system was learning autonomously,
not requiring any explicit human monitoring.

We compare the performance of the policy learned after
autonomous learning to that learned by behavior cloning
(BC). We evaluate the learned policies on grasping the
cube starting from (a) in-distribution (ID) states and (b)
out-of-distribution (OOD) states where the position and
orientation is varied outside the demo distribution. For
ID performance, both the polices get 100% success rate on 20 trials. However, on OOD states, BC
learned policy gets a 20% success rate whereas autonomously learned policy gets a success rate of
75% on 20 trials. This experiment provides evidence for how reinforcement learning when learning
autonomously can train for long times, and learn a more robust policy in the process.
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A Appendix

In this section, we provide additional details of our experimental setup and hyperparameters. As
mentioned earlier, we use the encoder architecture and augmentations from DrQ-v2 [21]. We share
the encoder for the actor, critic, and VICE discriminator but use a separate encoder for the MEDAL
discriminator. To stabilize training for all discriminators we use mixup and spectral norm regular-
ization [22, 23]. We also utilize REDQ to improve sample complexity with an ensemble of 5 critics
and a UTD ratio of 1 for all tasks [24].

A.1 Simulation Experimental Details

For simulation tasks, we provide 10 updates to the forward discriminator every 500 steps, and to the
backward discriminator every 100 steps. We also measure performance by evaluating the agent for
10 episodes at an interval of 10000 steps, and make use of oversampling, i.e. sampling state-action
pairs from the demo buffer which replace a subset of the batch sampled from the replay buffer before
updating the critic. More details can be found in the table below.

Name Description Value
Seed Frames Number of random actions taken before training 10,000

Oversampling Count Sampled transitions from demos for critic 16
Episode Length Number of timesteps per rollout 100
Entropy Bonus Entropy loss coefficient 0.0
Learning Rate Learning rate for Adam 3× 10−4

Optimizer Optimizer for agent and discriminator Adam
Frame Stack Frame stack X Env frames 1
Hidden Dim Hidden dimension for shared encoder 256

Agent Batch Size Number of samples per minibatch 256
Discriminator Batch Size Number of samples per minibatch for discrimators 512

γ Discount factor 0.99
τ update weight for target critic 0.005

Table 1: Simulation parameters

A.2 Robot Experimental Details

For the robot experiments, we mostly adhere to the parameters used for simulation in the table
with a few modifications. We reduce the number of seed frames from 10,000 to 2000 as the wall-
clock time per step for the robot is much higher than in simulation, and we find that we are still
able to produce strong results. We also only provide one update for the forward discriminator
every 1000 steps, and also one for the backward discriminator every 500 steps. We also add a
wrist camera to improve overall performance [25], and provide only the wrist-camera view to both
discriminators as we empirically find that this serves as an additional regularisation. Additionally,
we increase the oversampling count to 32 and make use of a regularization schedule that provides
an auxiliary BC loss for the actor which decays linearly from 1 to 0.0 over the first 10,000 steps for
both discriminators. Finally, we provide no proprioceptive information for the VICE discriminator,
but we give MEDAL discriminator the proprioceptive information, as it needs a stronger notion
of the robot’s localization to adequately reset to a varied number of initial positions for improved
robustness.
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